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A shortintroductionto quantumsymmetry

GerhardMack andVolker Schomerus
II. Institut für TheoretischePhysik, Universilät Hamburg,Germany

In quantumtheory, symmetriesmoregeneralthangroupsare possible.We give a general
definition of a quantum symmetry, such that symmetry operationsact on the Hubert
spaceit of physical statesand notionsof unitarity, invarianceand covarianceare defined.
Within this frame, weakquasiquantumgroupsare describedas a natural generalizationof
group algebras.Consistencywith locality distinguishesthem from moregeneralquantum
symmetries.To find the new kinds of symmetry one should investigatelow dimensional
quantumsystemssuchas two-dimensionallayers.
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In classicalmechanics,symmetriesaregroupsof transformationsactingon a
phasespace.Soonafter thediscoveryof quantummechanics,groupsymmetries
turned out to be an important tool to obtain predictionsof quantumtheory.
Recently, the study of low dimensionalquantumfield theoriesrevealedsigns
of more generalquantumsymmetries[“(quasi) quantumgroup” symmetries]
[1]. We will seethatall thesequantumsymmetriescanact on the Hilbert space

of physical statesandallow for a conventionalinterpretationas symmetry in
quantummechanics[21.

1. Quantumsymmetry in quantumtheory

Let usbeginwith a short reviewon groupsymmetriesin quantummechanics.
Considersomequantummechanicalsystem (7-1, {W}j0),H) within a second
quantizedformalism. The Hilbert space7-1 of physical statesshouldcontain a
uniquegroundstate 0) with respectto the HamiltonianH. Weassumethat 7-1 is
generatedfrom 0) by multiplets of field operators~P/(r,1) (I labelsmultiplets,
i labels fields in the multiplet I) that createparticlesor excitations.

A compactgroup G is called a (internal) symmetry of this systemif there
is a unitary representationU : G —~ 8(7-1) such that the ground stateJO) and
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the Hamiltonian H are invariantand field operators!1~!transformcovariantly
accordingto the representationt’ of G. To statetheserequirementsin mathe-
maticalterms,let usrecall two notionsfrom the representationtheoryof groups.
Everygrouphas atrivial representation~G : G —~ C definedby EG(c~)= 1 for
all ~ ~ G. The tensorproduct ~ of representationst, t’ is given by

(Tr~T’)k/,~J(~)= Tkj(~)t/J(~~) forall~eG. (1.1)

If we set ~ = ~ unitarity of U assertsU(~)*= U(~)—l = U(1) =

Invarianceof the groundstate10) canbe expressedas

U(~)JO)= 0) = JO)�G(c~)forall~EG. (1.2)

We saythat W/ (r, t) transformscovariantlyaccordingto the representationt~

of G, if for all ~ ~ G

= ~‘(r,t)r5
1(~)U(~) = ~‘(r,t)(i’~U)1~(~). (1.3)

Since we concentrateon internalsymmetries,thereis no action on the space—
time variable of the field. For this reasonwe will often neglect to write the

arguments(r, t) explicitly.
In conclusion,the formulation of symmetry in quantumtheory involves a

conjugation* to expressunitarity, a trivial representationc to stateinvariance
anda tensorproductof representationsto write down the covariancelaw. The
mathematicalstructurebehindthesenotionsis known as “(non-co-associative)
bi-*-algebra” (~, 4, �, *). In detail this meansthat g* is a *-algebrawith unit e
and4 : ~ ç~(co-product),~ : ~ —~ C (co-unit) are *-homomorphisms.
For zl the notion of a *-homomorphisminvolvesa definition of * on g* ® g*
which is not unique (cf. ref. [2]). Finally, the co-product4 andthe co-unit �

satisfy
(�®id)4 =id= (id®c)4. (1.4)

In fact, the co-productA determinesa tensorproductz ~ i’ for representations
t,r~ofg~,

(r~t’)(~) = (r®t’)(4(~)) forall~ec*. (1.5)

With respectto this tensorproductof representations,the co-unit f furnishesa
trivial one-dimensionalrepresentation.Triviality refersto theproperty E ~I ~ =

= r � for all representationsr of g*, which follows from (1.4).
Let usexplain how to abstracta bi-*-algebrafrom the representationtheory

of the compactgroup G. In this case,~ should denote the group algebraof
the compactgaugegroupG, i.e. the spaceof “linear combinations”of elements
in G. All homomorphismsof the group G canbe uniquely extendedto algebra
homomorphismsof thegroupalgebra~. Consequentlyit sufficesto fix

4G, ~G, *

on elements~ in thegroup G. ~G, * havebeendefinedaboveandcomparisonof
(1.5) with (1.1) yieldsAG(~) = ~ Assumingthat the actionof* on ~
is specified by (~ ® ~)* = ® j~*, (c*,AG,EG,*) is easily shown to satisfy
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all assumptionslistedabove.In this sense,groupsareonly specialexamplesof
bi-*-algebras.

Definition 1 ([2]). A (non-co-associative)bi-*-algebra (~, 4, �, *) is called
quantumsymmetryof the system (7-1, {~P},JO),H), if thereexists a represen-
tation

U: g* 8(7-1)

suchthat
(i) U is unitary in the sensethatU(~*)= U(~)~for all ~ E g*;

(ii) the HamiltonianH andthe groundstateJO) areinvariant, i.e.,

[H,U(~)1 = 0, U(~)JO)= I0)r(~) forall~eg*; (1.6)

(iii) the field operators~P’(r, t) transformcovariantlywith respectto the
representationr~of g*, i.e.,

U(~)~P’(r,t)= ~~!(r,t)(i’EU)1~(c~) (1.7)

= ~ , if4(ç~)=

We mentionthat the transformationlaw of adjoint fields W* involves an an-
tipode S. Consequently,the existenceof S should also be statedamongthe
definingfeaturesof aquantumsymmetry (cf. ref. [2]).

The covarianttransformationlaw (1.7) tells ushow to shift representation
operatorsU (~) through fields from left to right. Togetherwith the invariance
of thegroundstateJO) it determinesthetransformationpropertiesof states.We
demonstratethis for the one-excitationstates,

U(~)~’IO)=

= ~ =

Thetransformationlawof higherexcitationscan be foundalongthe samelines.

2. Weakquasiquantumgroups

The examplesof bi-*-algebraswhich comewith compactgroupshavedistin-
guishedproperties.We recall that the tensorproduct of groups is associative
andcommutative.This canbe tracedbackto propertiesof the co-product

4G.

In the lastsection,4G wasdefinedby A~(~)= ~ ~ for all ~ E G. Hence it is
co-associative,i.e. (AG®id)AG = (id®AG)AG, andco-commutativein the sense
that 4G = 4~ a4G,wherea: g*®g* , g*®g*i5definedbya(~Ø~)=

In this sectionwe explainhow co-associativityandco-commutativitycanbe
weakenedto allow for tensorproductswhich are associativeand commutative
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only up to equivalence.Let usemphasizethatwedo notassumeA (e) = e ®e. In
general,A (e) will be someprojectorP e ~ ~ so thatwe canaccommodate
for truncatedtensorproducts,i.e., the tensorproduct of two representations
possiblyvanisheson a nontrivial subspace~f the full representationspace.

Theco-productA is calledquasico-associativeif thereis ç~E g* ~ ç* ® ç* and

quasiinverse~‘ such that

= (id®A)A(e), ~ = (A ~id)A(e), (2.1)

q(4®id)A(~) = (id®4)A(~)ç~forall~Ec*. (2.2)

This in turn impliesthat (7r1 ~ m’) ~ 7r~~’and it’ ~ (it” ~ irK) areequivalent
representations(but notequal).Following Drinfel’d [3] we postulate

(id®id®A)(ç)(A®id®id)(~) = (e®~)(id®4~id)(ç7)(ç9®e),(2.3)

(id®id®�)(~) = 4(e). (2.4)

The tuple (g*,A,E,ç9) is quasi triangular, if thereis R E g* ® g* and quasi
inverseR1 suchthat

RR~1= A’(e), R’R = 4(e), (2.5)

RA(~)=4’(~)R forall~eg*. (2.6)

If A (~) = ~ ~ ®~thenA ‘(~)= ~ by definition.Quasitriangularity
implies it1 ~ ir’~ ir~~ it’. We postulatethe following two relations:

(id®4)(R) = ç~R
13co713R12ço’, (2.7)

(A ® id) (R) = ~312R13~R23~. (2.8)

We usedthe standardnotation. If R = ~ r~® r~then R13 = ~ r~® e ~ r~etc.

Ifs is any permutationof 123 and ço = ® ~ q~then

(I) I
~s(I)s(2)s(3) = ~a - . (2.9)

Theserelationsimply the validity of quasiYang—Baxterequations,

R12ço312R13ço~R23ço= ~321Ri3ço~1Ri3ço213R12. (2.10)

In the groupsituationwe seethat A (e) = e ® e = R,ç~= e ® e ® e leading to

the commutativeand associativetensorproduct of representations.Quantum
groupsareobtainedfrom groupsby dropping the restriction R = e 0 e . For
Drinfel’d’s quasiquantumgroups [3] we keeponly 4(e) = e oe. In a last step
of generalizationwe give up A (e) = e ® e to get weak quasi quantumgroups.
Thereexistnontrivialexamplesfor all thesestructures.

It canbeshownthatall algebraicstructuresdescribedin this sectiondetermine
a representationof the braidgroup [4]. This hasbeenappliedto constructknot
invariantsfrom quasiquantumgroups [5].
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3. Quantumsymmetry,locality andstatistics

In quantumfield theory,permutationgroupstatisticsis implementedthrough
quadraticrelationsamongthe field operators,namelycanonical(anti-)commu-
tation relationsfor bosons(fermions). The spin statisticstheoremstatesthat
fermionshavespins = ~, ~ whereasbosonshaveintegerspin. Moregeneral
valuesfor the spin (rememberthat thespin labelsrepresentationsof therotation
group, e.g. SO(2) in two spacedimensions)are possiblein low dimensional
quantumfield theory. They are associatedwith braid group statistics. It has
beenproposedto implementbraidgroupstatisticsthroughlocal braid relations
[6],

W/(x,t)Wj’(v,t) = ~“(y,t)W~’(x,t)R~w”’, x >v. (3.1)

Herex > y refersto someorderingprescription(cf. ref. [6]) andw1~shouldbe
complexnumbers.In contrastto ref. [6] we do not restricttheR-matrix to have
C-numberentries,but the matrix elementsshould takevaluesin U (~*)instead.
Note that for 7~= 1 and wL~= +1 we recoverBose/Fermicommutation
relationsas a specialcaseof eq. (3.1).

In a theory with weakquasi quantumgroupsymmetry,consistencyof (3.1)
with the quantumsymmetry(g~,4, r, *) and locality maybe exploitedto obtain
constraintson the coefficients. The analysissuggests

= (r’ 0 0 U)k/
1j(~2l3(R0 e)~’) . (3.2)

To gain someinsight into thestructureof (3.2) we demonstratethat local braid
relations (3.1) with 7Z given by (3.2) are at least consistentwith the transfor-
mation law offields, i.e., that both sidesof the equationtransformin the same
way. The productsof covariantfields which appearin (3.1) are in generalnot
covariant.However,onemayuseç~to constructa “covariantproduct”x of field

operators[2,4],

(W’ x ~ ~ ~ (3.3)

By (2.2), W’ x ~ transforms covariantly according to the tensor product rep-
resentationt’ ~ t”. If this covariantproduct is usedto rewrite the local braid
relations(3.1), (3.2), consistencywith thetransformationlaw is evident from
the intertwiningpropertiesof R, eq. (2.6).

Onecanalsoproveconsistencyof (3.1), (3.2) with associativityof theproduct
of field operators.The calculationsuse eq. (2.3) and the quasi Yang—Baxter
equations(2.10) [2].

Once (3.2) is established,it describesa direct connectionbetweenthe the
physicalRi-matrix in (3.1) andthe weak quasiquantumgroupstructureof the
quantumsymmetry.GivenR, ço onemay use(3.2) to calculate1?~.Fora general-
ized quantumsymmetry (i.e., R ~ eo e,~ ~ eo eoe ), 1?. is alwaysnontrivial,
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i.e., 7? � I. This explainswhy thesesymmetrieshaveneverbeenobservedin
higherdimensionalquantumsystems,wherethe Bose/Fermialternativeholds
(i.e., 7?. = 1). In lowerdimensionalquantumfield theory, thesituationis differ-
ent.We expectbraid statisticsof particlesor excitationswith non(half-)integer
spin to be implementedby local braid relations (3.1), 7?. ~ 1, which arenot
consistentwith groupsymmetries,sinceR = eoe,ç~= e0e0 e implies 7? = I.
Thus we are forcedto considermore generalquantumsymmetries.

Let usfinally mentionthat thereis anexampleof a localquantumfield theory
with nontrivial weak quasiquantumgroupsymmetry [7]. In thismodel,covari-
ant fields obey local braidrelations(3.1), (3.2) with a nonnumerical7?.-matrix.
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