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A short introduction to quantum symmetry

Gerhard Mack and Volker Schomerus !
I1. Institut fiir Theoretische Physik, Universitit Hamburg, Germany

In quantum theory, symmetries more general than groups are possible. We give a general
definition of a quantum symmetry, such that symmetry operations act on the Hilbert
space H of physical states and notions of unitarity, invariance and covariance are defined.
Within this frame, weak quasi quantum groups are described as a natural generalization of
group algebras. Consistency with locality distinguishes them from more general quantum
symmetries. To find the new kinds of symmetry one should investigate low dimensional
quantum systems such as two-dimensional layers.
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In classical mechanics, symmetries are groups of transformations acting on a
phase space. Soon after the discovery of quantum mechanics, group symmetries
turned out to be an important tool to obtain predictions of quantum theory.
Recently, the study of low dimensional quantum field theories revealed signs
of more general quantum symmetries [“(quasi) quantum group” symmetries ]
[1]. We will see that all these quantum symmetries can act on the Hilbert space
of physical states and allow for a conventional interpretation as symmetry in
quantum mechanics [2].

1. Quantum symmetry in quantum theory

Let us begin with a short review on group symmetries in quantum mechanics.
Consider some quantum mechanical system (M, {¥},|0), H) within a second
quantized formalism. The Hilbert space H of physical states should contain a
unique ground state |0) with respect to the Hamiltonian H. We assume that  is
generated from |0) by multiplets of field operators ¥/ (r,?) (I labels multiplets,
i labels fields in the multiplet /) that create particles or excitations.

A compact group G is called a (internal) symmetry of this system if there
is a unitary representation U : G — B(H) such that the ground state |0) and
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the Hamiltonian H are invariant and field operators ¥/ transform covariantly
according to the representation !/ of G. To state these requirements in mathe-
matical terms, let us recall two notions from the representation theory of groups.
Every group has a trivial representation €; : G — C defined by ¢5(&) = 1 for
all £ € . The tensor product X of representations 7, 7’ is given by

(TB )k (&) = 14i(&) 7)) forallle G, (1.1)

If we set &* = £~!, unitarity of U asserts U(E)* = U(E) ! = UEY) = U(E*).
Invariance of the ground state |0) can be expressed as

UE)|0) = [0) = |0Veg (&) forallée G. (1.2)

We say that ¥/ (r, 1) transforms covariantly according to the representation t/
of G, if forall £ € G

UEPLr 1) = Y (0T OUE) = D RU L E) . (1.3)

Since we concentrate on internal symmetries, there is no action on the space—
time variable of the field. For this reason we will often neglect to write the
arguments (r, f) explicitly.

In conclusion, the formulation of symmetry in quantum theory involves a
conjugation * to express unitarity, a trivial representation ¢ to state invariance
and a tensor product of representations to write down the covariance law. The
mathematical structure behind these notions is known as “(non-co-associative)
bi-x-algebra™ (G*, 4, ¢, +). In detail this means that G is a x-algebra with unit e
and 4 : G* — G* ® G* (co-product), € : G* — C (co-unit) are x-homomorphisms.
For A the notion of a x-homomorphism involves a definition of x on G* ® G*,
which 1s not unique (cf. ref. [2]). Finally, the co-product 4 and the co-unit ¢
satisfy

(e@id)d =id = (id®e)4. (1.4)

In fact, the co-product A4 determines a tensor product 7 X 7’ for representations
7,7 of G*,

TR = (r@1)(4()) foralleg”. (1.5)
With respect to this tensor product of representations, the co-unit € furnishes a
trivial one-dimensional representation. Triviality refers to the property e X 1 =
T = 1 X € for all representations 7 of G*, which follows from (1.4).

Let us explain how to abstract a bi-x-algebra from the representation theory
of the compact group G. In this case, G* should denote the group algebra of
the compact gauge group G, 1.e. the space of “linear combinations” of elements
in G. All homomorphisms of the group G can be uniquely extended to algebra
homomorphisms of the group algebra G*. Consequently it suffices to fix 44, €g, *
on elements &£ in the group G. €g, * have been defined above and comparison of
(1.5) with (1.1) yields 46 (¢) = ¢ ®&. Assuming that the action of x on G* @ G*
is specified by (E @ n)* = & @ np* (G* dg ¢, *) is easily shown to satisfy
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all assumptions listed above. In this sense, groups are only special examples of
bi-x-algebras.

Definition 1 ([2]). A (non-co-associative) bi-x-algebra (G*,4,¢,+) is called
quantum symmetry of the system (H,{¥},|0), H), if there exists a represen-
tation
U:G*— BMH)
such that
(i) Y is unitary in the sense that {(&*) = U (E)* forall & € G*;
(ii) the Hamiltonian H and the ground state |0) are invariant, i.e.,

[HU)] =0, U)0) =[0)e() foralleg™; (1.6)

(iii) the field operators ‘I’,—’ (r,t) transform covariantly with respect to the
representation t/ of G*, i.e.,

UG (rn) =Y P ®uU),uiE) (1.7)
p

=Y P (ot @EuE), if4@E) = ¢ eE).
14 p

We mention that the transformation law of adjoint fields ¥* involves an an-
tipode S. Consequently, the existence of S should also be stated among the
defining features of a quantum symmetry (cf. ref. [2]).

The covariant transformation law (1.7) tells us how to shift representation
operators U (¢£) through fields from left to right. Together with the invariance
of the ground state |0) it determines the transformation properties of states. We
demonstrate this for the one-excitation states,

UF0) = Y ¥/ (EpUE)|0)
= > Pl (E)eED|0) = Pl0) (&)

The transformation law of higher excitations can be found along the same lines.

2. Weak quasi quantum groups

The examples of bi-x-algebras which come with compact groups have distin-
guished properties. We recall that the tensor product of groups is associative
and commutative. This can be traced back to properties of the co-product 4.
In the last section, 4 was defined by 46(¢) = & ® £ for all € € G. Hence it is
co-associative, 1.e. (dg®1d)4dg = (1d @ Ag)Ag, and co-commutative in the sense
that 4 = 4; = 0dg, where o : G*®G* — G*®G* isdefined by o ((®n) = nRL.

In this section we explain how co-associativity and co-commutativity can be
weakened to allow for tensor products which are associative and commutative



364 G. Mack and V. Schomerus / A short introduction to quantum symmetry

only up to equivalence. Let us emphasize that we do not assume 4 (¢) = e®e. In
general, 4 (e) will be some projector P € G* © G* so that we can accommodate
for truncated tensor products, i.e., the tensor product of two representations
possibly vanishes on a nontrivial subspace of the full representation space.

The co-product 4 is called quasi co-associative if there is ¢ € G* 2 G*®G* and
quasi inverse ¢ ~! such that

pp~' = (idad)d(e), ¢ 'p=(4zid)d(e) . (2.1)
p{4@id)4(&) = (idA)4(E)p forallfecG*. (2.2)
This in turn implies that (7! ® 77) X 7X and 7' ® (7’ ® 7X) are equivalent
representations (but not equal). Following Drinfel’d [3] we postulate
(deided)(p)deideid)(p) = (exp)(idedzid)(p)(¢ 2 e), (2.3)
(ideidwe)(p) = d(e) . (2.4)
The tuple (G*,4,¢,9) is quasi triangular, if there is R € G* @ G* and quasi
inverse R~! such that
RR™ ' = A'(e), R™'R = A(e), (2.5)
RA(E) = 4" (&)R foralléeGr. (2.6)
IfA4(&) = Zp@ﬁ@ég then 47(¢) = Epﬁ@&f; by definition. Quasi triangularity
implies 7/ X 7/ = 7/ ® n!. We postulate the following two relations:
(id@4)(R) = ¢33 Ri3p23R10 7", (2.7)
(42id)(R) = p312R13033R230 . (2.8)
We used the standard notation. If R = Y rl @ r2 then Rj; = Y1) e @ r2 etc.
If 5 is any permutation of 123 and ¢ = 3¢} ® ¢2 < ¢ then

s
@

! _ . 5 ( 3
Ps(rs@s3) = D 05 Ve, v, . (2.9)
a

These relations imply the validity of quasi Yang-Baxter equations,

R12032R 130 hR2130 = 9321R23053\ Ri3p213R 12 (2.10)

In the group situation we see that 4(¢) = e® e = R, ¢ = ¢ @ ¢ @ ¢ leading to
the commutative and associative tensor product of representations. Quantum
groups are obtained from groups by dropping the restriction R = ¢ ® ¢ . For
Drinfel’d’s quasi quantum groups [3] we keep only 4(¢) = ¢ % e. In a last step
of generalization we give up 4(¢) = ¢ ® e to get weak quasl quantum groups.
There exist nontrivial examples for all these structures.

It can be shown that all algebraic structures described in this section determine
a representation of the braid group [4]. This has been applied to construct knot
invariants from quasi quantum groups [5].



G. Mack and V. Schomerus / A short introduction to quantum symmetry 365

3. Quantum symmetry, locality and statistics

In quantum field theory, permutation group statistics is implemented through
quadratic relations among the field operators, namely canonical (anti-)commu-
tation relations for bosons (fermions). The spin statistics theorem states that
fermions have spins = 1, 3,..., whereas bosons have integer spin. More general
values for the spin (remember that the spin labels representations of the rotation
group, e.g. SO(2) in two space dimensions) are possible in low dimensional
quantum field theory. They are associated with braid group statistics. It has
been proposed to implement braid group statistics through local braid relations

(61,
G0 () = B L OY (e DR x>y (3.1)

Here x > y refers to some ordering prescription (cf. ref. [6]) and w!’ should be
complex numbers. In contrast to ref. [6] we do not restrict the R-matrix to have
C-number entries, but the matrix elements should take values in ¢/ (G*) instead.
Note that for R = 1 and w// = +1 we recover Bose/Fermi commutation
relations as a special case of eq. (3.1).

In a theory with weak quasi quantum group symmetry, consistency of (3.1)
with the quantum symmetry (G*, 4, ¢, =) and locality may be exploited to obtain

constraints on the coefficients R,’jf] The analysis suggests

RHTJ = (et @U)ij(pas(Roe)p!) . (3.2)

To gain some insight into the structure of (3.2) we demonstrate that local braid
relations (3.1) with R given by (3.2) are at least consistent with the transfor-
mation law of fields, i.e., that both sides of the equation transform in the same
way. The products of covariant fields which appear in (3.1) are in general not
covariant. However, one may use ¢ to construct a “covariant product” x of field
operators [2,4],

P x W)= Y I (0Tl (02U (). (3.3)

By (2.2), Y1 x W7 transforms covariantly according to the tensor product rep-
resentation ' ¥ /. If this covariant product is used to rewrite the local braid
relations (3.1), (3.2), consistency with the transformation law is evident from
the intertwining properties of R, eq. (2.6).

One can also prove consistency of (3.1), (3.2) with associativity of the product
of field operators. The calculations use eq. (2.3) and the quasi Yang-Baxter
equations (2.10) [2].

Once (3.2) is established, it describes a direct connection between the the
physical R-matrix in (3.1) and the weak quasi quantum group structure of the
quantum symmetry. Given R, ¢ one may use (3.2) to calculate R. For a general-
ized quantum symmetry (i.e., R # ¢e®e, 0 # e2e®e ), R is always nontrivial,
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i.e., R # 1. This explains why these symmetries have never been observed in
higher dimensional quantum systems, where the Bose/Fermi alternative holds
(i.e., R = 1). In lower dimensional quantum field theory, the situation is differ-
ent. We expect braid statistics of particles or excitations with non (half-)integer
spin to be implemented by local braid relations (3.1), R # 1, which are not
consistent with group symmetries, since R = e®@e,p = e@e2e implies R = 1.
Thus we are forced to consider more general quantum symmetries.

Let us finally mention that there is an example of a local quantum field theory
with nontrivial weak quasi quantum group symmetry [7]. In this model, covari-
ant fields obey local braid relations (3.1), (3.2) with a nonnumerical R-matrix.
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